# ADE20K Dataset

Upernet Swin Large
MIT
UPerNet semantic segmentation model based on Swin Transformer architecture, suitable for high-precision image segmentation tasks
Image Segmentation
U
smp-hub
110
0
Upernet Swin Small
MIT
UPerNet semantic segmentation model based on Swin Transformer small architecture, suitable for scene parsing tasks like ADE20K
Image Segmentation
U
smp-hub
100
0
Upernet Convnext Large
MIT
UPerNet semantic segmentation model based on ConvNeXt-Large encoder, suitable for scene parsing tasks like ADE20K
Image Segmentation Safetensors
U
smp-hub
54
0
Upernet Convnext Small
MIT
UPerNet is a semantic segmentation model based on the ConvNeXt-Small architecture, suitable for image segmentation tasks.
Image Segmentation Safetensors
U
smp-hub
70
0
Upernet Convnext Tiny
MIT
UPerNet image segmentation model based on ConvNeXt-Tiny encoder, suitable for semantic segmentation tasks
Image Segmentation
U
smp-hub
149
0
Segformer B1 512x512 Ade 160k
Other
PyTorch-based Segformer model for semantic segmentation tasks, pre-trained on the ADE20K dataset
Image Segmentation
S
smp-hub
20
0
Segformer B5 640x640 Ade 160k
Other
PyTorch-based Segformer image segmentation model, suitable for semantic segmentation tasks on the ADE20K dataset
Image Segmentation Safetensors
S
smp-hub
274
0
Finetune Instance Segmentation Ade20k Mini Mask2former No Trainer
This is a Mask2Former instance segmentation model fine-tuned on the ADE20K-mini dataset, capable of identifying and segmenting different object instances in images.
Image Segmentation Transformers
F
qubvel-hf
24
0
Featured Recommended AI Models
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase